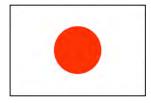
The 2nd JASTIP-WP2 Annual Workshop Feb. 3, 2017(Pullman Bangkok Grande Sukhumvit Hotel)

Extension of Solvent Treatment Method Developed by SATREPS Program to ASEAN Region

Kouichi Miura

Institute of Advanced Energy, Kyoto University

Bundit Fungtammasan


JGSEE/King Mongkut's University of Technology Thonburi

Members of our group (tentative)

Hideaki Ohgaki, Proferssor, Institute of Advanced Energy, Kyoto University

- **Ryuichi Ashida**, Lecturer, Graduate School of Engineering, Kyoto University
- Janewit Wannapeera, Researcher, Institute of Advanced Energy, Kyoto University

Katsuyasu Sugawara, Professor, Akita University Nakorn Worasunarak, Assoc. Professor, JGSEE/KMUTT Suneerat Fukuda, Assoc. Professor, JGSEE/KMUTT

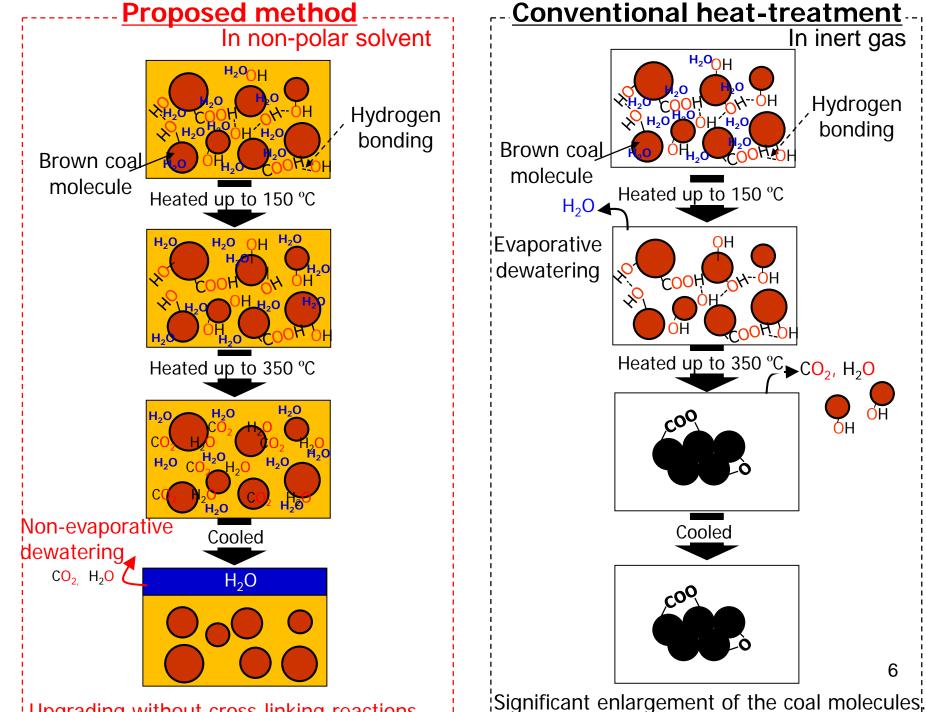
Japan-Thailand SATREPS Project

Development of clean and efficient utilization of low rank coals and biomass by solvent treatment

Dec. 20, 2013 – Dec. 19, 2018

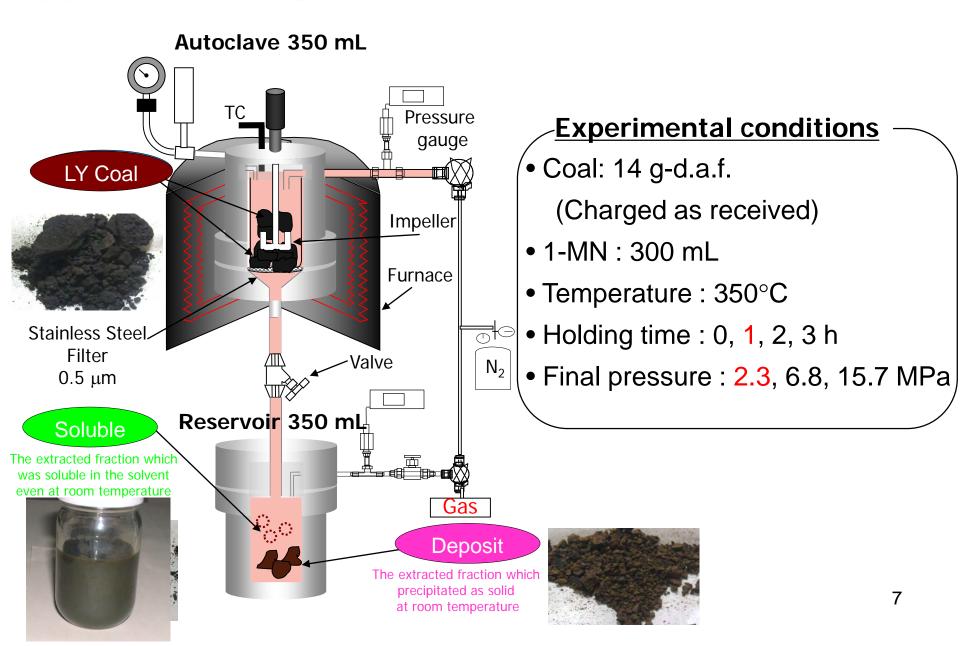
Kouichi Miura Institute of Advanced Energy, Kyoto University

Bundit Fungtammasan

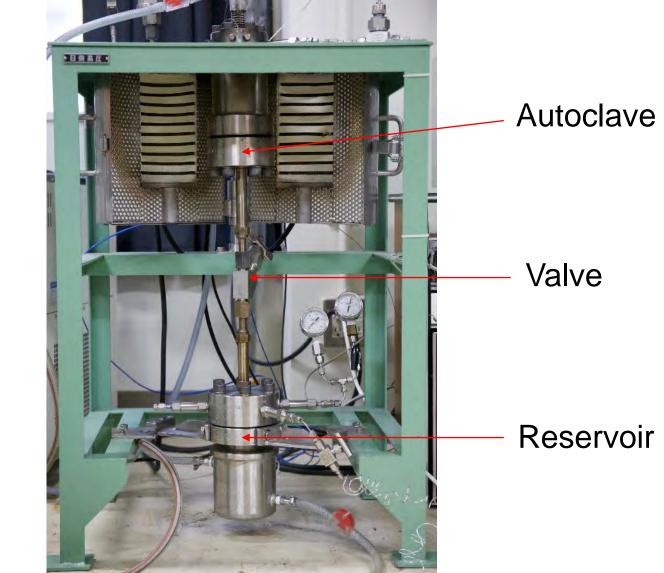

JGSEE/King Mongkut's University of Technology Thonburi

Purposes of the SATREPS Project

- 1. To establish a technology converting low rank coals and/or biomass wastes using a new method called "Degradative Solvent Extraction", which was developed by Kyoto University group, to raw material independent small molecular weight components called "Soluble" and Residue.
- 2. To develop technologies for utilizing Soluble and Residue effectively.
 - eg. Preparation of value added materials such as carbon fiber, clean fuel, chemicals, etc. Effective methods to combust/gasify Residue
- 3. To assist the development of human resources and research capabilities in Thailand by conducting joint research.
 - The technologies developed under cooperative researches will contribute to reduce the emission of global warming gases as well as environmental pollutants.
 - The technologies developed will be disseminated to ASEAN countries which need such technologies.


What is the

"Degradative Solvent Extraction"?

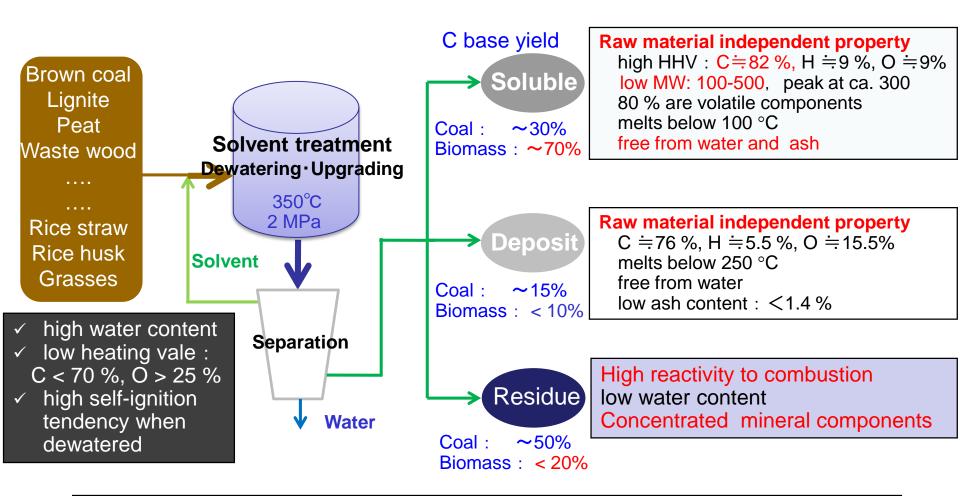


-Upgrading without-cross-linking reactions--

Apparatus and procedure

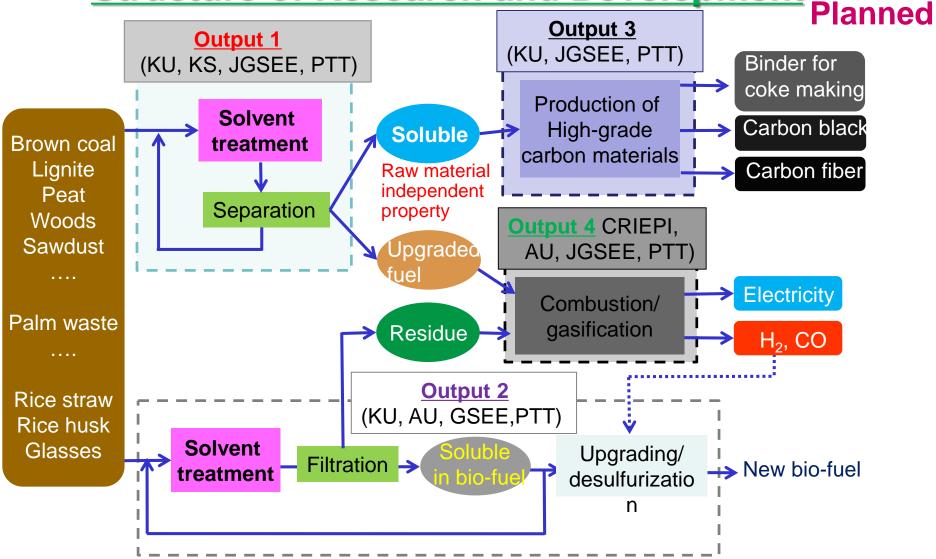
150 cm

Raw materials used


Brown coal (Loy Yang)

Rice straw

Leucaena


Core technology is "Degradative Solvent Extraction"

The method dewaters and upgrades various low grade carbonaceous resources, producing high quality extract in high yield under mild conditions.

- Almost no heating value loss through the treatment
- Soluble and Deposit have raw material independent properties

Structure of Research and Development

Output 1: Upgrading of low rank coals and biomass by solvent treatment
 Output 2: Production of new bio-fuel from biomass wastes and effective upgrading
 Output 3: Production of high-grade carbon materials from the Solubles
 Output 4: Combustion/gasification of upgraded fuels/residues

Cooperative Structure of our project

Japan

Head Investigator: Kouichi Miura Research fund: 178 million yen from JST

Kyoto University: Miura Gr. Kouichi Miura, Specially App. Prof. Hideaki Ohgaki, Prof Ryuichi Ashida, Assist. Prof. Motoaki Kawase, Prof. Taro Sonobe, Research Administrator Janewit Wannapeera, Dr. Trairat Muangthong-on, PhD cand.

Akita University: Sugawara Gr. Katsuyasu Sugawara, Prof. Takahiro, Kato, Assis. Prof. Kenji Murakami, Prof.

CRIEPI: Makino Gr. Hisao Makino, Dr. Kenji Tanno, Dr. Satoshi Umemoto, Dr. Atsushi Ikeda, Mr. Shiro Kajitani, Dr.

Kobe Steel Co. Ltd: Okuyama Gr Noriyuki Okuyama, Dr. Takuya Yoshida, Dr. Shigeru Kinoshia, Mr. Koji Sakai, Mr.

Thailand

Head Investigator: Bundit Fungtammasan Research fund: 300 million yen from ODA

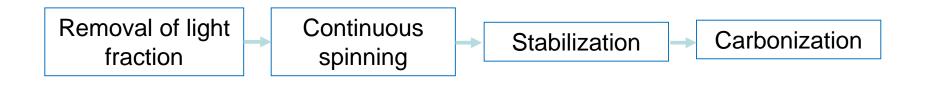
JGSEE/KMUTT: Bundit Gr. Assoc.Prof. Bundit Fungtammasan Assoc.Prof. Sirintornthep Tawprayoon Assoc.Prof. Nakorn Worasuwannarak Assoc.Prof. Suneerat Fukuda Dr. Supachita Krerkkaiwan Ms. Sasithorn Buranatrevedhya Mr. Supachai Jadsadajerm Mr.Jaggapan Sanduang Ms.Thitima Sornpitak Mr.Kaweewong Wongaiyara

PTT-RTI, PTT Public Company Ltd: Arunratt Gr.

Arunratt Wuttimongkolchai, Ms. Suttipong Tunyapisetsak, Mr. Suchada Butnark, Dr. Anurak Winitsorn, Dr. Suriya Porntangjitlikit, Mr. Kornthape Prasirtsiripham, Mr.

Four research groups from Japan and two research groups from Thailand are involved in this project.

More than 30 researchers from academy and industry contribute to this project


M **b pt**

12

Planned Schedule of Research and Development

	Schedule (from 2014 to 2018)													Group in charge								
Activity		2014 2015 2016 2017 2018											Japan Thailand									
,				4Q	1Q			4Q	1Q			4Q	1Q		-	4Q	1Q	2Q	-	4Q		
Task 1. Upgrading of low rank coals and biomass by solvent treatment																						
1.1 Production of Solubles from low rank coals and biomass using	Π																				КU	JGSEE
a batch autoclave		_						<u> </u>			<u> </u>				_	_					ĸo	JUJEL
1.2 To optimize the production of Solubles																					кU	JGSEE
from low rank coals and biomass																					ĸo	JUSEL
1.3 To characterize the properties of Solubles and Residues from										╘											ки	JGSEE
low rank coals and biomass																Į		Į			ĸo	JUSEL
1.4 To design and construct the semi-continuous							-	-			<u> </u>	<u> </u>									KS	PTT
extraction process (1 kg/h)																					KJ	FII
1.5 Production of Solubles from low rank coals and biomass																					KS	PTT
using the semi-continuous extraction process																					KJ	FII
1.6 Conceptual process design for constructing a pilot plant of 10															1						KS	PTT
ton/day																					K3	PII
Task 2. Production of new liquid biofuels from solubles																						
2.1 Optimization of production of liquid biofuels using batch																						LOCEE DET
reactor (5 L)		1	1		İ		1	\Rightarrow	×												KU	JGSEE, PTT
2.2 Upgrading liquid products to liquid biofuels by		1						1							1							DTT
hydroprocessing							\vdash	1		-	-	╞╤	>								AU	PTT
2.3 Combustion test in gas turbine engine		1	1				1	1			1				-				*		CRIEPI, KS	PTT
2.4 Cost estimation, feasibility study and scale-up plant (in case		1	1				1	1			1			1	1			1				DTT
of technical soundness)															l						KS	PTT
Task 3. Production of high-grade carbonaceous materials from Solubles																						
3.1 Characterization of Solubles as a raw material for high							1	1			1					1						
performance carbon materials								1		\Rightarrow											KU	JGSEE
3.2 Design and construct a small apparatus producing carbon		1	1			1	1	1			1			1	İ	1		1		1		
fiber/carbon black								1													KU	JGSEE
3.3 Production of carbon fiber from Solubles		1	1					1			1			⊨⇒	Ì	1		1		1	KU	JGSEE
3.4 Design and construct a small continuous spinning apparatus			1					1			1											10055
(0.1 kg/h)														1	1	1				+	KU	JGSEE
3.5 Production of carbon fiber using a small continuous spinning		1	1				1	1		1	1			İ	1							JGSEE
apparatus																+		-		₽	KU	PTT
3.6 Conceptual process design for a pilot plant			1		1			1			1	1			1				_	⊨⇒	KU	JGSEE
Task 4: Combustion/gasification of upgraded fuels/residues																						
4-1 Fundamental Examination of combustion/gasification			1																			
behaviors of upgraded fuels/residues in TG																\Rightarrow					CRIEPI,AU	JGSEE,PTT
4-2 Examination of combustion/gasification behaviors of																						
upgraded fuels/residues in Entrained bed reactor																				\rightarrow	CRIEPI,AU	JGSEE,PTT
4-3 Examination of combustion behaviors of upgraded			1																			
fuels/residues in Fluidized bed reactor																	1			\Rightarrow	CRIEPI	JGSEE

Preparation of carbon fiber from Soluble – Task 3 -

-20% of light fraction was removed by heat treatment

Spinning using a mono-hole continuous spinner at -200°C

Oxidation treatment in air at -300°C

Heat treatment at -800°C

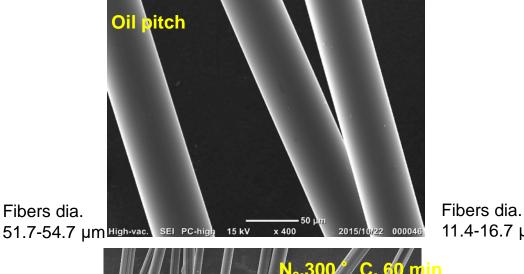
-20% of Soluble can be utilized as oil without treatment

Continuous spinning of the modified Soluble

Fig. Mono-hole spinning machine

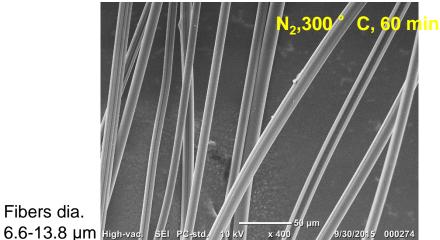
Modified Soluble is heated to 285 °C

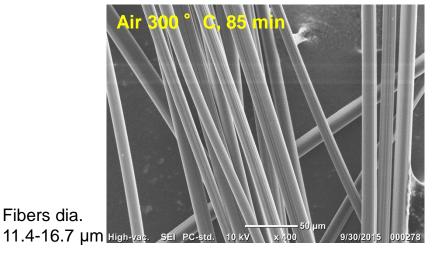
Pitch fiber coming out from the mono-hole

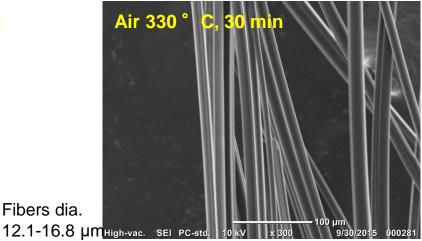

Pitch fibers collected

[°] Rotating drum (16 cm) (rotating at 600 – 1000 rpm)

Carbon fibers: J-RS Soluble

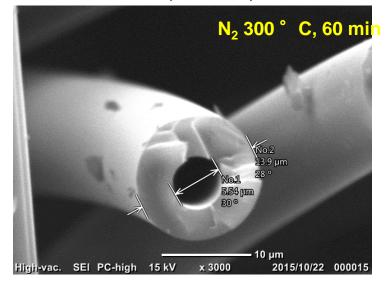

Fibers dia.

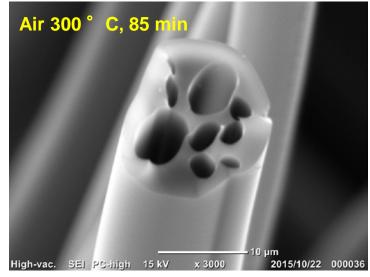

SEM images of carbon fibers (400x)



Fibers dia.

Fibers dia.





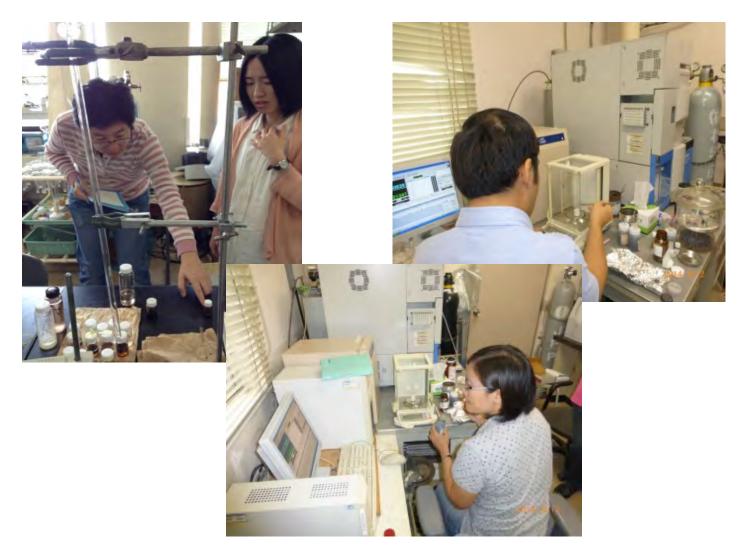

Carbon fibers: J-RS Soluble

 SEM cross-sectional images of carbon fibers (3000x)

- Only one hollow was observed from the fibers prepared from Soluble treated by the N₂ purge.
- Several hollows were observed from the fibers prepared from Soluble treated by the air oxidation.

Dispatch of researchers Acceptance of researchers

History of exchange


Year	Number of dispatch researchers	Number x Day (man-day)	Number of accepted researchers	Number x Day (man-day)				
2013	11	55	1	60				
2014	39	311	11	255				
2015	27	249	9	123				
2016	19	197	12	154				
Total	96	812	33	592				

Visit Kyoto University (July. 17 – Aug. 3, 2014)

Training of solvent extraction and carbon fiber preparation

Akita University (June, July, 2014)

Training of solvent desulfurization experiments

Visit CRIEPI

(June. 15-17, 2015) Training of DTF operation

(Feb. 1, 2015)

Plant tour at Kobe Steel (Aug. 4, 2014)

図3 0.1t/d HPC 連続製造試験装置 Fig. 3 0.1t/d HPC Bench scale unit

The Thai members had a opportunity to see the continuous HPC production facility

Solvent Extraction Plant tour at Kobe Steel (April, 2015)

Activities extending the SATREPS project

Activity assimilating the SATREPS output to ASEAN countries

Japan - Thailand SATREPS Workshop 2016

"Development of Clean and Efficient Utilization of Low Rank Coals and Biomass by Solvent Treatment"

> 1 March 2016 Sattabongkot room, Pilot Plant Development and Training Institute building, KMUTT(Bangkhuntien campus)

Supported by a JST fund

Outline of the Workshop

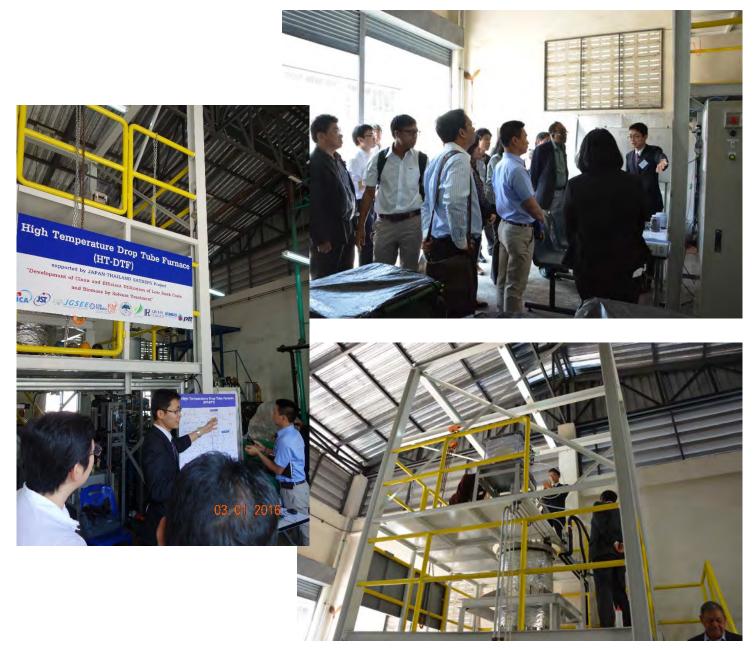
KOREL

- Laboratory tour of JGSEE/KMUTT and poster presentations of the STREPS project
- Introduction of the SATREPS project
- Presentations of from 4 ASEAN countries

JGSEE SPERDO

kita Universit

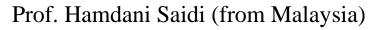
Participants from ASEAN countries


Name	University/Organization	Country		
Dr. Lim Chee Ming	Universiti Brunei Darussalam	Brunei		
Dr. Long Bun	Institute de Technologi Cambodia	Camobodia		
Dr. V. K . Vijay	Indian Institute of Technology Dehli	India		
Dr. Harwin Saptoadi	Universitas Gadjah Mada (UGM)	Indonesia		
Iman K. Reksowardojo	n K. Reksowardojo Institut Teknologi Bandung, Indonesia			
Dr. Khamphone NANTHAVONG	Deputy head of NU Laos			
Mr. Boualy VONGVISITH	Renewable Energy and New Materials Institute, Ministry of Science and Technology, Laos	Lao PDR		
Mr. Phonepasong Sithideth	Institute of Renewable Energy Promotion, Ministry of Energy and Mine, Laos			
Dr. Masjuki Hj. Hassan	Universiti Malaya (UM)			
Dr. Hamdani Saidi	Universiti Teknologi Malaysia	Malaysia		
Dr. Nasrudin Abd Rahim	Universiti Malaya (UM)			
Dr. Hla Toe	Ascociate Professor	Myanmar		
Dr. Rizalinda de Leon	University of the Philippines Diliman			
Atty. Pete H. Maniego, Jr	National Renewable Energy Board	Phillipines		
Dr. Ereese Macabebe	Ateneo de Manila University			
Dr. Liu Dac Hai	Vietnam National University-Hanoi	Vietnam		
Dr. Le Chi Hiep	Chi Hiep Vietnam National University-Ho Chi Minh City (VNU - HCM)			
Dr. Van Dinh Son Tho	Vietnam Japan International Institute for Science of Technology			

Other participants: 1 from India, 20 from Thailand, and 18 from Japan

Tour of JGSEE/KMUTT

Tour of JGSEE/KMUTT



Presentation of ASEAN participants

Prof. Harwin Saptoadi (from Indonesia)

Dr. Van Dinh Son Tho (from Vietnam)

Dr. Atty. Pete H. Maniego (from the Philippines)

Workshop scenes

Pamphlet and video prepared for the Workshop

Training at Kyoto University Sep. – Oct., 2016

Training of 2 Thai students at Kyoto University Sep. 9 – Oct. 18, 2016

supported by a KU fund ⁴³

Training of 1 Laos researcher at Kyoto University Jan. 9 – Feb. 7, 2017

Dr. Xayalak from Laos National University is using a set of thermoanalysis equipment

supported by a JICA fund

Expected Outcome/Future of our Project

- Implementation of a new technology for utilizing low rank coals and biomass wastes in Thailand
- Human building in both Japan and Thailand for effective utilization of biomass waste/low rank coal
- JGSESS/KMUTT and PTT-RTI help dissimilation of the technologies developed to ASEAN countries
 JGSESS/KMUTT works as a center of biomass conversion technology development and human resource building in
 - ASEAEN countries

Japanese members will assist the activities through JASTIP (Japan ASEAN Science and Technology Innovation Platform) program.